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In this paper we focus on predicting cash flows for private
capital funds. We start by discussing the characteristics
of cash-flow data that make these predictions challenging.
We then examine several models for expected contribu-
tions and distributions, and evaluate their performance,
both in-sample and out-of-sample. We find that for con-
tributions, uncalled capital, in addition to age, is a useful
predictor. Distributions are more difficult to predict; we
find that disentangling the effect of a fund’s performance
on distributions produces better forecasts than other sim-
pler approaches. We compare the models explored in this
paper with those outlined by Takahashi and Alexander
and find that they underperform our models by a wide
margin. Finally, we draw some lessons regarding how
to model cash flows, and how to measure model perfor-
mance. We also make some observations regarding the
intersection of risk and prediction with regard to cash
flows.



MODELING CASH FLOWS FOR PRIVATE CAPITAL FUNDS

Do

Private capital cash flows are uncertain in both their magnitude and timing. The uncertainty of
capital calls (contributions) often forces Limited Partners (LPs) to keep their uncalled capital in
low-return investments, such as treasury bills, that are both liquid and less risky.! Large amounts of
uncalled capital sitting in low-return investments, waiting to be called, could be put to better use if
contributions could be predicted to some extent or, better still, if distributions could be recycled
to make contributions. A good cash-flow model for investing in private capital funds is extremely
desirable as it can help LPs minimize the capital sitting in low-return investments, set realistic
investment targets, assess financial viability of new or existing commitments, and enhance reporting.

In this paper we discuss private capital cash-flow models to predict the average amount of capital
that funds will call (or distribute) over a future period, such as a quarter. We model contributions and
distributions separately, since contributions, being relatively unaffected by the fund’s performance,
can be modeled more directly than distributions. Also, it is important to understand contributions
independently of distributions since they are liabilities for LPs. A fundamental econometric challenge
in modeling cash-flow data of private capital funds is that anywhere between 60 and 80 percent
of quarterly observations are zeros, i.e., most quarters have no cash flows? The presence of large
number of zeros in the analysis data limits the explanatory power of econometric models. With
these limitations in place, we build upon ideas from other studies such as modeling contributions as
a function of the age and uncalled capital of a fund. We model distributions as a function of the
age, uncalled capital, valuation, and cumulative distributions of a fund. We calibrate our models
using splines-based linear regression and fund-level cash-flow data. We report the performance of
our models in three prominent subclasses of funds, namely buyout, real estate, and venture capital
in the US private capital market.

The remainder of this paper is organized as follows. Section 2 discusses literature related to
cash-flow modeling of private capital funds. Section 3 provides a general overview of our methodology;
sections 4 and 5 then discuss modeling and empirical comparison of models for contribution and
distribution respectively. Section 6 compares the performance of our models with Takahashi and
Alexander’s model (calibrated to Burgiss data) for both contributions and distributions. Section 7
examines important econometric challenges and lessons in private capital cash-flows modeling and
prediction. The paper concludes with section 8. The appendices discuss our dataset, notation, and
mathematical details of the models.

Cash-flow modeling for private capital is largely unaddressed by the existing literature; a few
exceptions are Buchner et al. (2010), de Malherbe (2004, 2005), Robinson and Sensoy (2016),
and Takahashi and Alexander (2002). Historically, investing in private capital was governed by
simple rules of thumb which were rendered ineffective as allocations to alternatives grew over time.
Recognizing this, Takahashi and Alexander (2002) proposed a framework that modeled contributions
and distributions as rates using uncalled capital and valuation as the respective denominators.
However, their model is deterministic in nature. Buchner et al. (2010) and de Malherbe (2004,
2005) introduced stochastic models of the cash-flow dynamics for drawdowns and distribution. Most
recently Robinson and Sensoy (2016) noted that most cash-flow variation at a point in time is
diversifiable —either idiosyncratic to a given fund or explained by the funds age. They also observed

'For LPs, not servicing capital calls in a timely fashion may result in the loss of reputation or relationships with
General Partners (GPs) and perhaps the eventual default on the commitment.
2In the econometric literature this is frequently referred to as “zero-inflation.”
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that private capital cash flows are procyclical in their co-movement with the public markets as the
conditions in the public market affect exit opportunities for private capital investments. Another
body of literature relevant to this paper is related to finite mixture models that frequently generate
zero-valued observations for modeling zero-inflated data. These models have been successfully applied
to count data (see Dalrymple et al. (2003) and Zuur et al. (2009)), however, their applications
to continuous data is limited. Even for count data the applications of zero-inflation models are
limited to only explaining the underlying data-generating process. The explanatory power of zero-
inflation models does not necessarily extend to their predictive power—nevertheless, it is common to
expect some similarity between the two. Recent literature (Shmueli 2010) has begun to recognize
the distinction between the in-sample explanatory power and out-of-sample predictive power of
econometric models.

In this section we give a general introduction to the methodology used. More complete descriptions
can be found in the sections devoted to modeling contributions (section 4) and distributions (section 5)
as well as in appendices C and D that contain formal descriptions of the models. See appendix B for
details of the data used to estimate the models.

The goal of this paper is to predict the expected (or average) cash flows a private capital
investor will experience over a future horizon (such as a quarter, or a year). Since contributions are
liabilities we model them separately from distributions rather than combining them into net cash
flows. However, lurking beneath the seeming simplicity of this goal are a number of complications,
some of which we will be returning to in future work (see section 7).

An initial question is whether to predict cumulative variables® (such as cumulative contributions)
or per-period variables (such as contributions in a given quarter). We consider both, but focus on
the latter since we find that they lead to models whose performance is superior.

A second question is how to measure the performance of the model. We will use root-mean-square
error (RMSE) since other measures result in undesirable model choices (see section 7 for further
details). Cash-flow data is very noisy; consequently we also seek to minimize the effect of this noise
to avoid drowning out model differences. We will achieve this by also looking at performance over
periods longer than a quarter, namely one year. Finally, we evaluate these measures out-of-sample,
by backtesting all our models.

A third question is what form of per-period cash flows to try to predict. For example one could
predict the cash flows divided by fund size (termed contribution and distribution fractions in this
document); alternatively one could predict the cash flow as a fraction of a number representing
the size of its source (uncalled capital for contributions and fund valuation for distributions). We
find that these two modeling choices can be subsumed into our models via the addition of suitable
interaction terms.

Finally, note that the relationships we expect to find are non-linear. For example, fund age is
clearly an important variable when explaining cash flows. Equally clear is that this relationship is not
linear. For contributions it will peak early on, while for distributions it will reach a peak somewhere
near the middle of the fund’s life. We will repeatedly use the same flexible tool to incorporate this
non-linearity into our models: splines. Briefly, the idea is that the space of splines can be spanned
by some basis (basis splines). The regression can be carried out against the raw variable (such as
age) composed with these basis splines. See appendix A for some examples of basis splines.

3See appendix F for more details.
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Clearly there are significant statistical regularities in contributions. The pattern is evident if one
looks at cumulative contributions, as shown in figure 1. This figure also shows that while the median
cumulative contribution follows a simple pattern, the dispersion around the median is high.
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Figure 1: Violin plots of cumulative contribution fractions using fund-level data, the solid lines are
smooth curves fitting the 50th percentiles across age groups

In addition to the cumulative contribution, we can also focus directly on per-period contributions.
Figure 2 illustrates how contributions vary by fund age and also by amount of uncalled capital. In
addition to a clear age-dependence (they decline with fund age) there is also a non-trivial dependence
on uncalled capital; for example for 4-year old buyout funds the lower quartile (by uncalled capital)
funds call at a third of the rate as there in the top quartile.

Finally, we examine the dependence on vintage; figure 3 plots how contribution fractions evolve
with age by vintage. The vintages are grouped by half-decade in order to gather enough data
within each group to generate a number that is not overly noisy. Financial crises (such as the
global financial crisis (GFC)) have a significant effect on contributions (as a function of age); this is
especially noticeable for real estate. Outside of crises the pattern of contributions seems reasonably
stable. Note, too, that vintage, as a factor, is less easily incorporated into a predictive model since
in general the information we would need to extract from a vintage is not available at the time of
the prediction.

The probability density of contribution fractions is very far from normal, as can be seen in
figures 4 and 5. In fact it seems to be an exponential distribution (or perhaps gamma distribution)
that has been zero-inflated (see table 1). For venture capital there is inflation at multiples of 5%
(see the bottom panel of figure 5).
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Figure 2: Empirical contribution fractions (equally-weighted) against age for funds grouped by uncalled
capital quartile
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Figure 3: Empirical contribution fractions by vintage group
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Figure 4: Fraction of calendar quarters, as a function of age, with contributions that are zero (or small

or negative)
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Figure 5: Histogram of contribution fractions grouped by subclass and fund age range

Burgiss Applied Research

© 2018 The Burgiss Group, LLC



MODELING CASH FLOWS FOR PRIVATE CAPITAL FUNDS

Table 1: Percentage of zeros in cash flow data across three subclasses

Subclass Contribution Distribution
Buyout 61% 67%
Real Estate 7% 60%
Venture Capital 76% 82%

We model the contribution fraction of each fund in a quarter, defined as

Contribution
Fund size

Using the contribution fraction, we estimate the following models, each separately on each subclass?

Contribution Fraction =

Zero A model that always predicts zero.
Constant A model that predicts the same contribution fraction, regardless of age or uncalled capital.
JustAge A model that predicts contribution fraction as a smoothly varying function of age.

Nolnteractions A model that predicts contribution fraction in terms of a smoothly varying function
of age and uncalled capital, but not their interactions.

WithInteractions A model that predicts contribution fraction in terms of a smoothly varying
function of age, uncalled capital, and their interactions.

Next we illustrate the predictions of the above models. These predictions are a function of what
data is used to estimate the model. Later in this section we will backtest the models, namely ask
the models to predict the next period using only data from the past. However here we pick a
representative fit, namely the most recent one (i.e., we estimate the model using all available data).

Figure 6 illustrates the predictions of the simpler of the above models, namely those that do not
employ uncalled capital as a variable. In order to plot the more complex models, we need to pick a
level of uncalled capital corresponding to each age. In order to see the effect of this variable, we choose
three such levels by estimating the 25th, 50th, and 75th percentiles of uncalled capital corresponding
to each age;® these data are displayed in figure 7. With these uncalled-capital quartiles as a function
of age we can now plot the model predictions for the models with a dependency on uncalled capital.
These predictions are displayed in figure 8. Comparing these results with figure 2 we see general
agreement. The dependence on age is as expected, in addition the relationship with uncalled capital
mirrors the data. For example, somewhere between 1 and 2 years the inevitable impact of uncalled
capital becomes evident (namely that low uncalled capital implies lower contribution rates). Perhaps
more interesting is that before that point the relationship is unclear, or even inverted (as appears to
be the case for venture capital funds younger than 2 years®). Finally note the spike at age zero in
all age-dependent models; this is due to the data equating the inception date of a fund with its first
cash flow (presumably a contribution) thus guaranteeing a cash flow at age zero.

1See appendix C for the mathematical details of these models.

5The estimation of age-dependent quantiles is done via a spline quantile regression.

5Thus these funds exhibit a form of momentum: funds that call faster than average continue to call faster than
average, until they run out of funds to call, of course.
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Figure 6: Predictions of models with no dependence on uncalled capital against age
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Figure 7: Empirical contribution fractions (fund-size-weighted) against age for funds grouped by uncalled
capital quartile
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Figure 8: Predictions of models with dependence on uncalled capital against age; the uncalled capital is
set at the percentile value indicated by the line color
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Figure 9: Backtesting performance of several models for predicting quarterly contributions
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Figure 10: Backtesting performance of several models for predicting annual contributions

While in-sample measures of model performance are useful to understand how good a model is,
ultimately what matters is out-of-sample performance. For time-series data this is usually carried
out by backtesting the model. Here the out-of-sample data is from the future. For example when
predicting the cash flows in (say) 2016 Q4 the model will only have access to data up to the end of
2016 Q3. Thus the backtesting procedure consists of repeatedly estimating each model using data
strictly before each quarter and then predicting the cash flows for that quarter. Since data from far
in the past is, presumably, less relevant than more recent data we also use exponentially decaying
weights in the regression with a characteristic time of 1 year” We measure performance of the model
by the root-mean-square error.

Figures 9 and 10 display the results of carrying out this backtesting for quarters from 1990 Q1
to 2017 Q2. Figure 9 uses quarterly data (i.e., the model observes quarterly data and predicts the
next quarter); figure 10 uses annual data (i.e., the model is fit to past annual data and predicts the
cash flows during the next year).

Starting with the quarterly backtest (figure 9) we see the expected ordering of the models (namely,
Constant is worst, and either Nolnteractions or WithInteractions is best). Note that while this ordering
is guaranteed in-sample, it is not guaranteed out-of-sample (which is what backtesting constitutes).
Also the most complex model (WithInteractions) is essentially over-fitting the data. Nevertheless it
out-performs simpler models (such as Nolnteractions) by a small margin. However evidence of this
overfitting can occasionally be seen; for example if that model is estimated using a shorter half-life
(which is similar to reducing the amount of data during estimation) then poor predictions become

"The characteristic time is how long it takes for the weights to decay to 1 /e of their value for the most recent
observations. A characteristic time of 1 year is equivalent to a half-life of about 0.6 years.
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Table 2: Backtesting contribution models on annual data
The models were calibrated on, and predicted, annual cash flows. Reported statistics are out-of-sample
R? since 1990; the numbers in parentheses are since 2010.

Out-of-sample R? / %

Subclass Constant JustAge Nolnteractions WithInteractions
Buyout 30 (23) 62 (60) 69 (66) 70 (68)
Real Estate 19 (15) 61 (58) 68 (64) 71 (68)
Venture Capital 24 (19) 71 (71) 79 (79) 82 (82)

possible, especially early in the backtesting period.

Moving to annual backtesting (figure 10) we see the differences between models become more
evident. In particular the superiority of models that in addition to age also use uncalled capital as
a predictor becomes clear. Also of note is that even during the GFC the models out-performed a
prediction of zero. This was one of the motivations for using weighted regressions. For example if one
performs a regression with no weights (or a long half-life) then during the GFC contributions plummet
and a prediction of zero is better than the model predictions. In a sense this is not surprising since
the model does not use any variables that indicate in which “regime” it finds itself.

Finally note that while both the signal (as indicated by the Zero model) and the model errors
are larger in the annual backtest, the relative size of the errors as function of the signal (this can be
thought of as an out-of-sample version of 1 — R?) declines. The performance of the annual models
is compared in table 2, using an out-of-sample R? measure (see appendix E for more details on
the computation of out-of-sample R?) As can be seen, the models that incorporate information
from age and uncalled capital significantly improve their out-of-sample R?. Note also that the error
time-series are more stable in the annual backtest than in the quarterly one. The reason for these
effects is that we are performing temporal aggregation. As discussed later, our models are trying
to predict the general rate of cash flows, as opposed to the precise timing of each individual cash
flow. However, we measure performance relative to actual cash flows. One can consider the precise
timing of individual cash flows as analogous to idiosyncratic noise, and this is diversified away by
aggregation, in this case, temporally.

See later in this document (section 7) for a discussion of aggregation in general.

Modeling distributions of private capital funds can be aided by separating out the effects of
performance on them. For example, a drop in distributions could either be due to delayed exits
or reduced asset prices. This makes distributions more complex compared to contributions that
are directly scaled with the respective fund sizes (or total contributions) known a priori. Total
distributions, on the other hand, would not be known until the fund is liquidated. To get around
this difficulty we estimate the total distributions of each fund in a quarter as

Total Distributions Estimate = Cumulative Distributions 4+ Valuation + Uncalled Capital.

The estimate of total distributions consists of three components: the sum of distributions that are
already paid-out, the valuation that will potentially be paid-out, and the uncalled capital. Early
in the life of a fund this estimate will be very similar to the fund size® and later on it will be very

8This explains why the uncalled capital is included in the estimate.

Burgiss Applied Research (© 2018 The Burgiss Group, LLC



MODELING CASH FLOWS FOR PRIVATE CAPITAL FUNDS 12

similar to the actual total distributions (that would eventually be known). Similar to fund size for
scaling contributions, an estimate of total distributions is a suitable choice for scaling per-period
distributions, we define distribution ratio as

Distribution

Distribution Ratio = .
Total Distributions Estimate

Distribution ratios are extremely similar to contribution fractions as they are completely abstracted
from the size and performance of the fund; also their cumulative value approaches one as the
underlying fund gets old (see figure 11). The concept of cumulative distribution ratios is also
mentioned in Mathonet and Meyer (2008) as “repayment age.”
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Figure 11: Violin plots of cumulative distribution ratios using fund-level data, the solid lines are smooth
curves fitting the 50th percentile across age groups.

Figure 11 reveals that the distribution ratio is clearly a function of age but in the cross-section
of funds there is large deviation from the median in each age bucket. To explain the variation from
the median, we consider the wvaluation ratio as an independent explanatory variable? defined as

Valuation
Total Distribution Estimate’

Valuation Ratio =

To examine the explanatory power of the valuation ratio we plot the mean distribution ratio as a
function of age in the quartiles of valuation ratio. Figure 12 suggests that along with age, valuation

9Uncalled capital and the sum of distributions that are already paid-out can also potentially serve as explanatory
variables, but in our experience they do not improve the model performance significantly, perhaps because they are
very highly correlated with age, which is already included in our models. These factors may provide independent
sources of information if included as investment speed or performance respectively but this is not explored in this

paper.
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Figure 12: Empirical distribution ratio (equally-weighted) against age group by valuation ratio quartiles
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Figure 13: Histograms of distribution ratio in various age buckets
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ratio also explains the mean distribution ratio. This will become clearer when we compare models
with and without valuation ratio as an independent variable; but before we explore modeling,
it is important to discuss another important aspect of distributions data, namely that it is also
zero-inflated. This is shown in figure 13 and also summarized in table 1. For a massively zero-inflated
data (such as venture capital, see table 1) zero will be the correct prediction most of the time. A
model that always predicts zero is included in our models as it can serve as a benchmark for assessing
the performance of other models.

Using distribution ratios, we estimate the following models, each separately on each subclass.!? Our
models are designed to predict only the timing of distributions; any effect of the performance of
fund on distributions is not captured by these models.!

Zero A model that always predicts zero.
Constant A model that predicts the same distribution ratios, regardless of age or valuation ratio.
JustAge A model that predicts distribution ratios as a smoothly varying function of age.

Nolnteractions A model that predicts distribution ratios in terms of a smoothly varying function
of age and valuation ratio, but not their interactions.

WithlInteractions A model that predicts distribution ratios in terms of a smoothly varying function
of age, valuation ratio, and their interactions.

Figure 14 shows the model predictions for the distribution ratio against age for the first three models
which do not include valuation ratio as regressor. A quick in-sample comparison of JustAge model
with the empirical profile in figure 12 confirms that age has significant predictive power, and when
combined with valuation ratio the WithInteraction model produces plots nearly identical to the
empirical profile (compare figure 12 and the right panel of figure 15).

For an out-of-sample analysis of the distribution models we run backtests in the same framework as
defined in section 4.4 and use the same characteristic time of 1 year to generate exponentially decaying
weights. Again we compare the out-of-sample performance of models using root-mean-square error
in distribution fraction space, which we defined as

Distribution
Fund Size

Distribution Fraction =

The predicted distribution ratios are converted to predicted distribution fractions as follows,

Total Distributions Estimate

Predicted Distribution Fraction = Predicted Distribution Ratio x -
Fund Size

108ee appendix D for the mathematical details of these models.

' This is not to suggest that the distributions forecasts cannot be improved by incorporating information about the
performance of fund. In fact forecasting distributions could be a two-step process in which separate forecasts about
timing and performance are combined.

Burgiss Applied Research (© 2018 The Burgiss Group, LLC



MODELING CASH FLOWS FOR PRIVATE CAPITAL FUNDS 15

3% — constant — JustAge — Zero
2% - o
<
g
1% - -
0% -
RS
T 3%
x 2
< 4 @
2% 2
.% 0 m
2 105 - )
=] @
1)
0 0%-
3% -
0 &
=
2% - 3
%
1% - g3
g
0% -
0.0 25 5.0 7.5 10.0

Age

Figure 14: Model predictions (not including models that also use valuation ratio as a regressor) of
distribution ratio against of age
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Figure 15: Models predictions (models that also use valuation ratio as a regressor) of distribution ratio
against of age; the valuation ratio is set at the percentile value indicated by the line color
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Table 3: Backtesting distribution models on annual data
The models were calibrated on, and predicted, annual cash flows. Reported statistics are out-of-sample
R? since 1990; the numbers in parentheses are since 2010.

Out-of-sample R? / %

Subclass Constant JustAge Nolnteractions WithInteractions
Buyout 24 (22) 45 (45) 48 (49) 46 (51)
Real Estate 20 (22) 43 (41) 45 (44) 45 (46)
Venture Capital 26 (-97) 46 (25) 51 (35) 53 (38)

T Attributed to the fact that since 2010 Zero has been a better model than Constant.

Note that measuring the error in fraction space makes them equally-weighted, i.e., insensitive to fund
sizes. The results of backtesting the distribution models are plotted in figures 16 and 17, where we
compare the performance of all five models quarter-by-quarter from the first quarter of 1990 to the
second quarter of 2017. Figure 16 shows backtesting results produced using quarterly distributions
data and predictions; figure 17 uses rolling annual distributions data and predictions. These models
only predict the timing of distributions, so spikes in the errors are inevitable as funds regularly (and
unpredictably) experience large capital gains or losses. Similarly large-scale market events like the
dot-com crash of 2002 and the GFC of 2008 are not predictable. When such events have a negative
impact on market performance Zero is almost guaranteed to outperform more complex models.

Looking at figure 16 it seems that all models perform quite similarly, and during crises Zero can
even outperform the rest. In general other models modestly improve upon Zero and with a closer
look one can rank them. Constant is clearly the worst and WithInteractions the best but is nearly
identical to Nolnteractions. WithInteractions model is also prone to overfitting especially when data is
sparse (note large spikes for buyout funds in figure 16). Similarly Nolnteractions is only slightly better
than JustAge. Moving to figure 17, where the models are compared with temporally aggregated data
(namely annual data), the ordering of models (worst to best) does not change but the differences
among the models become clearer as a results of temporal aggregation. Note also, as a result of
temporal aggregation, both prediction and observed data become less spiky. The performance of
these models on annual data is also summarized in table 3. The out-of-sample R%s are about 45-50%
for the JustAge, Nolnteractions, and Withlnteractions models; this represents a large improvement
over the Constant model. Looking at table 3 and also figures 16 and 17, one might justly wonder
how little information funds valuations (as an independent variable) provide as the difference in the
JustAge and Nolnteractions is barely noticeable. One way to explain this is to notice that the JustAge
model is already exploiting the information in fund valuations for computing distribution ratios
as the dependent variable and converting the distribution-ratio forecast into distribution-fraction
forecast. It is possible that beyond this fund valuations have little or no further information to add.
This will become clearer in section 5.4 where we compare the JustAge model with another model in
which fund valuations are explicitly used as an independent variable and not used to construct the
dependent variable.

When modeling distributions, a natural question to ask is what would happen if we did not
separate the effect of fund performance on distributions. To explore this question, we compare
the WithlInteractions model with an analogous fraction-based model, which we call WithInteractions-
Fraction (see appendix D for more details). Figure 18 compares the out-of-sample performance
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Figure 17: Performance of several models for predicting annual distributions
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of the two modeling approaches for the last twelve years in all three subclasses of funds. Except
during the GFC, the ratio-based model always outperformed the fraction-based model for buyout
and real estate. For venture capital the two approaches are pretty competitive but in the last
5 years or so the ratio-based model has outperformed. Since the fraction-based model does not
try to separate out the effect of performance on distributions it can outperform the ratio-based
model during the broad market boom or bust. During the GFC of 2008 the fraction-based model
marginally outperformed the ratio-based model because it could “see” the impact of negative return
on fund valuations. However, since it does not separate the performance effects it is also prone to
overfitting distribution fractions (dependent variable) which may have large swings (notice a spike
in the case of real estate funds during 2010 in figure 18). Aside from the empirical evidence, in
order to understand why the ratio-based model is a better choice, we turn to in-sample analysis
and compare R? (see table 4) of both models in the fraction space (this requires recomputing R? of
the ratio-based model in the fraction space). The ratio-based model achieves a greater fit for both
buyout and real estate subclasses and slightly underfit for venture capital which explains why the
two approaches are competitive for venture capital.
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Figure 18: Backtesting-based (annual) comparison of the WithInteractions and WithInteractions-Fraction
models

Finally we return to the discussion started in section 5.3 concerning the predictive power of fund
valuations for forecasting distributions. We compare the JustAge model with the WithlInteractions-
Fraction model. Both of these models exploit the same information in fund valuations, albeit
differently. Figure 19 plots the comparison of two models using a rolling annual backtest. It seems
that JustAge is uniformly better than the WithlInteractions-Fraction model except during a crisis.
For real estate and venture capital the JustAge model is usually competitive, and often beats the
Withlnteractions-Fraction model. With this it is no surprise that the JustAge model is already using
the information in fund valuations which is why we should not expect a large improvement over the
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Figure 19: Backtesting-based (annual) comparison of the JustAge and WithInteractions-Fraction models

Table 4: Comparison of R? in fraction space

Modeling Approach

Subclass Ratio-based Fraction-based
Buyout 40% 36%
Real Estate 38% 27%
Venture Capital 25% 27%

JustAge model by the Nolnteractions or Withlnteractions models.

This section compares the models we have explored in this paper with the approach outlined in
Takahashi and Alexander (2002).

The Takahashi and Alexander model (henceforth, TA) for contributions is arguably an instance
of what we referred to above as an age-dependent, uncalled-capital-dependent, with-interactions
model, albeit of a particularly simple form. The model assumes contributions are proportional to
uncalled capital, and that the proportionality constant (termed the contribution rate) can vary with
the age of the fund. The contribution rate is assumed to be a step function which is constant in the
first year, constant in the second year and constant thereafter. Thus the model has three parameters
(if we hold constant the ages at which the step function changes level, which we do, following the
original paper). For distributions the model has even less parameters. It assumes distributions are
proportional to fund value (or NAV) and that the proportionality constant (termed the distribution
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rate) is simply the fund age as a fraction of the fund’s life raised to some fixed power (called the bow

parameter).!?
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Figure 20: Comparison of predictions from the TA contribution model with those of other contribution
models discussed in this paper

In figure 20 we see the predictions of TA for contributions (calibrated to all our data), where
we have set the level of uncalled capital at three different levels (determined by quartiles). It is
instructive to compare these model outputs with the empirical data shown in figure 2. For very young
funds (age close to 0) TA underpredicts contributions. For funds between about 1 to 2 years of age
it exhibits too much dependence on the amount of uncalled capital, while for funds that are about 4
years of age it, perhaps, exhibits insufficient dependence on the amount of uncalled capital. In fact
note that this answers a natural question regarding the patterns of contributions to funds: to what
degree are their contributions best modeled as being proportional to the amount of uncalled capital?
TA assumes this proportionality; the models in this paper allow for more complex (or less complex)
behaviors. What the data indicates (and the backtesting, below, supports) is that funds behave
in non-proportional way for the first few years of their life (contra TA) although later (after about
3 years) they do exhibit a dependence on uncalled capital, as, indeed, they must. An interesting
question regarding TA is how to set its various parameters. In the original paper (Takahashi and
Alexander 2002) they suggest several different sets of parameters suitable for venture capital funds;
however those parameters were based on the authors’ experience with a relatively small set of venture
capital funds two decades ago. Instead we calibrate the model’s parameters to our universe of data
(adhering to our backtesting methodology!®). We show in figure 21 a backtesting-based comparison

12The TA model also has an assumed growth rate as a parameter, which we set to a suitable value. Takahashi and
Alexander (2002) also includes a minimum distribution rate (termed yield) which we ignore.

13This is a secondary reason for not using the parameters from the original paper: doing so would result in a
look-ahead bias for results before the year 2000.
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Figure 21: Backtesting-based (annual) comparison of the TA model for contributions with various other
models from this paper
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Figure 22: Backtesting-based (annual) comparison of the JustAge and TA model for distributions, which
uses a bow of 2.0, annual growth of 13%, and a life span of 20 years for private capital funds
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Table 5: Backtesting comparison of some models from this paper with Takahashi and Alexander
The models were calibrated on, and predicted, annual cash flows. Reported statistics are out-of-sample
R? since 1990; the numbers in parentheses are since 2010.

Out-of-sample R? / %

Contribution Models Distribution Models
Subclass Constant TA JustAge Constant TA JustAge
Buyout 30 (23) 47 (45) 62 (60) 24 (22) 25 (27) 45 (45)
Real Estate 19 (15) 35 (37) 61 (58) 29 (22) 14 (17) 43 (41)
Venture Capital 24 (19) 55 (b5) 71 (71) 26 (—9T) 9 (15) 46 (25)

T Attributed to the fact that since 2010 Zero has been a better model than Constant.

of the TA model, using annual data, to some of the models for contributions explored in this paper.
As can be seen that even JustAge (which exhibits no dependence on the amount of uncalled capital)
outperforms the TA model for all quarters and for all subclasses. Note that before the GFC the
underperformance of TA was very significant. In recent years the difference has declined somewhat,
although for buyout it seems to be on the rise again. The TA model for contributions is compared
with the other models explored in this paper using out-of-sample R? in table 5. The TA model is
only a slight improvement over the Constant model but significantly underperforms JustAge (for all
other models, see table 2).

Turning to a similar backtest of the TA model for distributions in figure 22 we see that again
even a simple model (JustAge) almost always outperforms it (in this case, the exception is during
the dot-com crash for venture capital). The out-of-sample R? comparison of the TA model for
distributions is provided in table 5. As can be seen, in summary, TA significantly underperforms
JustAge and other models for distributions as well (see table 3).

It turns out that modeling fund-level cash flows, from a purely statistical perspective of calibrating
a linear model with some explanatory variables, is relatively straightforward. They say the devil is
in the details; in this case the devil is in the choice of question, and in the omissions. This section
addresses these issues.

Quarterly cash-flow data (contributions or distributions) contains a large amount of idiosyncratic
noise (we describe this more precisely below). Because of this, two models, one of which is much
better than the other, may appear quite similar. Consequently it would be useful, for purely modeling
reasons, to diminish this idiosyncratic noise. One way to achieve this is to aggregate the data in some
way. In this section we discuss predicting cash flows over a period longer than a quarter (temporal
aggregation) as well as predicting the cash flows of a portfolio of funds, rather than a single fund
(cross-sectional aggregation).
We start with a discussion of what we called idiosyncratic noise by way of a simple example.

Consider tossing a coin 100 times, obtaining 52 heads, and estimating
the (true) probability that the coin comes up heads based on that data. Suppose we ignore the
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categorical nature of the outcome (heads or tails) and instead treat it as a continuous variable, where
heads is 1 and tails is 0. And suppose we treat this is as regression (with no independent variables)
so all we need to estimate is the intercept. The natural estimate is 0.52 (the “good” estimate); let’s
compare this with 0.6 (the “bad estimate”). If we compare the RMSEs then the good estimate gets a
score of 0.4996 and the bad 0.5060, which might lead one to conclude that the two estimates are
almost indistinguishable (and perhaps the bad estimate is in fact better since it is a round number).
Before jumping to any conclusions let us take a second look at the data. Since the data is distributed
binomially we can compute the relative likelihood of observing the given data as a function of our
two estimates; from this perspective the good estimate makes the observations 3.7 times more likely
than the bad estimate. Thus treating the data as a continuous variable creates a notion of error
(RMSE) which is swamped by “coin noise”. In fact, the real issue is that in this example we only
seek to model the probability of heads, but the RMSE numbers assume we are trying to predict the
actual coin toss itself, and thus produce a performance measure that is mostly made up of errors
that we do not consider to be errors at all, and which serve to mask the differences between models
(in this case estimates of the probability of heads).

Indeed if funds always called capital (and distributed proceeds) in precise units of (say) 5% of
the fund size, then the above analogy would be very close to reality. Alas, cash flows are more
complicated and we must treat them as a continuous variable (because they are). Thus, like the
coin example, our performance measures hide important differences between models. One way to
highlight these differences is via aggregation. For example, in the case of the coin example one could
group the 100 tosses into two groups of 50 tosses each (say 25/50 heads in the first and 27/50 heads
in the second). This would also serve to make the difference between the two models very clear. A
second strategy would be to ask many people to toss 100 coins and then average the number of heads
in all their first tosses, all their second tosses, etc. These two strategies correspond to temporal and
cross-sectional aggregation.

In sections 4 and 5 we looked at cash flows over a periods of a quarter
and then a year. The latter is an example of temporal aggregation, and indeed we found that the
differences between models became much clearer in this case. However, there is a limit to temporal
aggregation; anything more than about one year seems irrelevant (from a practical perspective).

Thus it seems natural to turn to the second form of aggregation.!*

In our setting cross-sectional aggregation corresponds to forming
portfolios of funds and predicting the total cash flows of the portfolio. Not only does this appear to
be useful if one is trying to (statistically) distinguish models, but it is also the natural perspective of
users of such a model since they would typically invest in a number of funds and be interested in
the aggregated cash flows.

If one compares the performance of models on portfolios, however, something disappointing
occurs. With the exception of the Zero model, all models become almost indistinguishable. Note
that this includes the Constant model! The reason for this is that our models are linear and as a
result the average prediction for several funds is the prediction of the average fund. Thus forming
portfolios of funds makes the average fund in the portfolio become more and more alike to the
average fund in any other portfolio. The Constant model more-or-less assumes that all funds are like
an average fund, and hence all models converge to that simple model.

14 A third kind of aggregation (also temporal in nature) is discussed in appendix F, where we discuss regressions in
levels.
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Thus statistically, cross-sectional aggregation is not a useful technique to distinguish models® A
natural question is whether a good model is even necessary if one is primarily interested in a large
well-diversified portfolio. We turn to this in the next section (section 7.3).

In this document we always measure the performance of a model based on its root-mean-square
error. For example, when working with contributions we take the difference between the predicted
contribution fraction and the observed contribution fraction, square it, compute the mean over some
group of such errors, and take the square root. Typically we group by subclass and calendar quarter.
The RMSE or the L? norm is given by

L2({er, . en}) = \/i(e% botel).

This norm is, implicitly, what is used when a model is estimated via OLS. However the L? norm is
sensitive to extreme values!® An alternative norm is the L' norm:

L (fersrend) = ~(lea] 4+ feal),

which has the advantage of being less sensitive to outliers. As a crude approximation, one can
consider the sample mean as minimizing the L? norm, while the sample median minimizes the L,
norm. For cash-flow data, this makes the L' norm almost useless, since the median is often zero.
Thus if models are compared via the L' norm, it is hard to beat the model Zero!

Throughout this document we have assumed that the primary variable of interest was the expected
cash flows. What does this mean? Roughly it means that if one had a very large set of identical
funds, then the average contribution (or distribution) during the next quarter for that set is the
expected contribution (or distributions). Suppose two-thirds of these identical funds would call zero
and one third would call $1M, which gives an expected contribution of $0.33M per fund. Suppose
an investor was invested in just one fund and was interested in how much cash would have to be
available in order to service those calls. Would $0.33M suffice? Clearly not. In fact with probability
1/3 such an investor would be short by $0.66M. What this example shows is that the seemingly
innocuous assumption of estimating expected cash flows, may not be well-aligned with the needs of
investors. Instead, a better estimate would be a statement of the following sort: the probability
that one’s contributions in the next quarter will be $1.23M or less is 95%. We term a quantity like
$1.23M a cash flow at risk. This notion is analogous to the notion of value at risk (VaR), the latter
being commonly used when measuring market risk. However, the highly non-normal probability
distribution of cash flows make this notion more challenging than in market risk. We intend to
return to this topic in future research.

15This is probably too strong a statement. One possible approach to using portfolios to distinguish models would
be to form portfolios that are deliberately alike in terms of their funds. For example one portfolio could be composed
of only old funds, or only funds with a relatively large amount of uncalled capital.

16 A more precise version of this statement is that it is an estimator that assumes the data is normally distributed.
For other distributions it may be a poor estimator.
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In this paper we attempted to model and predict cash flows for private capital using a splines-based
linear regressions framework. We modeled contributions and distributions separately since they
require somewhat different modeling approaches, and given that contributions are liabilities it is
useful to understand them in isolation.

We explored a number of different models for contributions and found that most of the variation
in cash flows can be explained in terms of age, but that nevertheless uncalled capital is a worthwhile
addition to the set of regressors. A model with all interactions between age and uncalled capital was
only marginally better than one without interactions, and does not seem justified in view of the
danger of overfitting. With annual data we obtained an out-of-sample R? of about 60% (sometimes
almost 80%).

Distributions were best modeled in terms of distribution ratios (as opposed to distribution
fractions). Again, age was the most explanatory variable. In this case the next most explanatory
variable — valuation ratio— was of limited value. In general, distributions are far less predictable
than contributions and we obtained an out-of-sample R? of about 40%.

We also compared our models with those of Takahashi and Alexander (2002) and found that
our models (even relatively simple ones) outperformed those of Takahashi and Alexander by a wide
margin. This seemed to be due to Takahashi and Alexander underpredicting contributions for very
young funds as well as misspecifying the dependence on the amount of uncalled capital.

Finally we drew a number of noteworthy conclusions regarding the modeling of cash flows. First,
although RMSE is sensitive to extreme values, it is not possible to measure model performance using
more robust measures (such as mean absolute error) since the latter tend to favor models that
always predict zero. Second, in order to isolate model differences between models it is useful to
perform aggregation. Indeed temporal aggregation makes it easier to distinguish models, however
cross-sectional aggregation (forming portfolios) makes all models alike, and hence is useless as a
technique to distinguish models. Third, the above issues draw attention to the question of whether
predicting expected cash flows is the most natural model output. In fact, it could be argued that
cash flows (especially contributions) should be approached through the lens of risk management and
as a result we should be computing something akin to “cash flows at risk.” We intend to pursue this
topic in subsequent research.
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In this section we describe the notation used in this document to define regressions. The philosophy
behind this notation is to compactly list all the variables that should appear on the RHS of the
regression, without naming the associated coefficient.!”

Suppose we have random variables y, a,b. Thus our data will consist of N observations of these
variables {(v;,a;,b;) | i =1,...,N}. A simple model for this data might be

yi = a+ fa; + €.

This model explains y in terms of two variables: a and a constant (which we can think of as 1). A
compact way of listing all the explanatory variables (and leaving the coefficients unnamed) is

y~1+a.

One can think of the “4” operator as taking the union of two sets of variables (namely 1 and a) to
create a new set of variables (namely {1,a}). This can easily be extended to more variables and
functions of variables. For example y ~ 1+ a + a® + b+ expb is a compact formula equivalent to

Yi = a + Bra; + Paa; + Bsb; + Biexpb + €;.

An important set of functions that can be applied to variables are basis splines. For example,
suppose a is a variable taking on values between 0 and 10, then B(a; degree = 3; knots = 2) represents
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Figure 23: Cubic basis splines with knots at 0, 2, and 10 (indicated by dashed lines); the last facet,
labeled “Example; plots three linear combinations of the basis splines in the previous facets

17 This notation is inspired by, and essentially the same as, the formula notation used in the statistical programming
languages S and R.
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cubic (i.e., degree 3) basis splines with knots at 0, 2 and 10; these basis splines are illustrated in
figure 23. Note that B(a;...) represents a set of variables. Thus y ~ 1 + B(a; degree = 3; knots = 2)
represents a regression formula with a total of six terms (five cubic basis splines of a and an intercept).

Finally, given two sets of variables we can take their Cartesian product, creating all pairwise
interactions as well as the uninteracted variables. For example y ~ 1 + {a,a?} x {b,b?} is the same
asy ~1+4+a+b+a®+b*+ab+ ab® + a®b + ab?.

All computational results in this paper are based on private capital data in the Burgiss Manager
Universe (BMU) as of 2017 Q2.1 Our data consisted of United States equity funds denominated
in USD (excluding funds of funds) from three subclasses of funds, namely buyout, real estate, and
venture capital. These funds are distributed over a broad range of vintage years from 1980 to 2017
although we only used data from vintage year 1990 onwards. For each fund we have a complete
history of quarterly valuations as well as all cash flows (the latter with date-level precision).

We model the contribution fraction of each fund in a quarter, defined as

Cig

Si

where i indexes the set of funds in our estimation universe, S; is the larger of the fund size and the

sum of all contributions made to fund 7 (thus > qCig < 1), and C;, are the contributions to fund ¢
in quarter q.

Ci,g =

Zero

Cig~0
Constant

Ci’q ~1
JustAge

Cig ~ 1+ Blaig)

where a; 4 is the age of fund ¢ in quarter ¢, and B(-) represent a set of basis splines (see
appendix A). For the age variable we use quadratic splines with knots at 1, 2, and 5 years.

Nolnteractions
Ciq~ 1+ B(aig) + Bluig-1)

where u; 41 is the uncalled capital fraction for fund i one quarter before quarter ¢ (so
Ujg—1 = 1 — Zq, <q ¢i.q)- The splines for the age variable are the same as in the previous model.
The splines for uncalled capital are cubic splines with a knot at 1/2.

18The Burgiss Manager Universe is a research-quality dataset comprised of nearly 40 years of daily cash flows and
valuations for over 7,200 private capital funds, representing more than $5 trillion of capital committed across the globe
in various Private Equity, Private Debt and Real Asset strategies. The dataset covers a full spectrum of strategies
across all geographies, and BMU data is representative of global institutional investor experience because it is sourced
entirely from limited partners, avoiding the natural biases associated with other data sourcing models.
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WithlInteractions
Cig~ 1+ B(aig) x Bluig-1)

See the previous section for an explanation of “x”. Both sets of splines are defined as in the
previous models.

We compute the estimate of total distributions for each fund (indexed by ) in a quarter (indexed by
q), defined as

q—1

Tig—1= Z D+ Vig-1+Uig-1

t=1
where D; ; is the distribution in quarter ¢ and V; ,_; is the fund valuation and U; ;1 is the uncalled
capital in the previous quarter. Using T; ,—1, we define the distribution ratio and valuation ratio as
follows, respectively:

dig = Diq
’ T%,qfl
and
Vig—1 = L’q_l-
ﬂ,q—l

The analogous quantities in the fraction space are computed using fund size S;, instead of T; ,_1, as
follows, respectively:

1
and
V’i,q = V:igil .
1

The models for distributions do not have an intercept because distributions
start with zero.

Zero

dig ~ 0.
Constant

dig~ 1.
JustAge

dig ~ B(aiq)-
For the age variable we use quadratic splines with knots at 2, 5, and 7 years.

Nolnteractions
diq ~ B(ai,q) + B(“Lq—l)'

The splines for the age variable are the same as in the previous model. The splines for valuation
ratio are specified with no knots.
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WithlInteractions
dijq ~ B(ai,q) X B(’Ui’qfl).

Both sets of splines are defined as in the previous models.
Withinteractions-Fraction
0iq ~ Blaig) X B(vig-1).

This model is defined in the fraction space, and uses the same sets of splines as defined in the
previous models.

During the backtesting of a model we generate a large number of predictions, ¢;, arising from many
funds and many periods. Corresponding to these predictions we have the realized cash flows, ¢;. We
compute an out-of-sample R? measure of the performance of the model as follows

R*=1-E?,

where
Lz({él —Cly... ,én — Cn})

E= L2({c1,...,cn})

and n is the total number of predictions.

All the regressions in sections 4 and 5 directly model the cash flows we are trying to predict: the
variable we are interested in is the contribution (or distribution) in some period, and the model
tries to explain that variable in terms of others. Note that these cash flows are very far from
normally-distributed; they are often zero (see figure 4) and when they are not zero they may be
best modeled by an exponential (or gamma) distribution. Consequently, a tempting alternative is to
model the evolution of cumulative variables (such as cumulative contribution fraction and cumulative
distribution ratio; see figures 1 and 11). Once we have a model that predicts a cumulative variable
then we can recover the cash flow by simply taking the difference between the current value of the
cumulative variable and the predicted value. However, it turns out that models based on this idea
generally underperform the more direct models described above. We believe the reason for this is
straightforward: during estimation these models try to fit the cumulative variables; this, in effect,
is similar to fitting the differences but with an age-dependent weighting scheme. This weighting
scheme is absent when we measure the performance of the model, and hence the predictions are
simply not optimal from the perspective of how we judge the models.

A variation on the above idea is to focus on the probability-density function (PDF) of the
cumulative variable and model how it evolves with age. For concreteness suppose we are interested
in contributions to buyout funds. Suppose further that we are interested in the contributions that
will be made to a one-year-old fund in the next year. One could compute the PDF of contribution
fractions for funds with age 1 and age 2, and compute the transition matrix between these two
states. This would tell us not only what the expected cumulative contribution fraction would be
in one year for our fund, but also the full PDF of such contributions. Subtracting off the current
cumulative contribution fraction would yield the actual cash flows. Since contribution fractions have
age-dependent medians, a simple transformation to this variable is to convert them into percentile
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ranks (among funds of similar age). This new variable will be uniformly distributed between 0 and
1. An illustration of what we are trying to model is shown in figure 24.
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Figure 24: Transitions from the percentile rank of cumulative contribution fraction in the previous
quarter to the current quarter

In this figure some interesting structure is apparent. For example, for venture capital the banding
is a result of the fact that venture funds often call capital in multiples of 5% of the fund size. The
dark bow-shaped line (which dips below the 45-degree line, in red) is the result of contributions often
being zero, which result in the fund drifting downwards in its percentile rank. In terms of modeling,
the simplest approach is to bucket the data by age and by percentile rank, then one can one estimate
a finite-dimensional transition matrix from one age bucket to the next.!® This approach introduces
a tension between two forms of precision: the wider the buckets the more precisely the transition
matrices can be estimated (since there will be more observations in each possible transition), however
wide buckets lead to less precise percentile ranks (since we only know its value is somewhere in that
bucket). Models based on buckets underperformed the more traditional regression-based models.
However, an approach based on bucketing is almost certainly not optimal; it is relatively model-free,
but it does not take advantage of any “smoothness” in the data. For example, as one moves from one
age bucket to the next in figure 24 it is clear that the data also changes smoothly; in addition as one
moves along the horizontal or vertical axis the densities also vary smoothly. Thus a better approach
would be to model these densities using some kind of smooth surface. We feel that this approach,
with some work, would be an interesting alternative to the regression-based models, although there
are some significant numerical challenges to fitting these surfaces robustly.

19 An interesting and natural question is to what degree this process is Markovian. Having computed transition
matrices it is a straightforward question to address; it boils down to how well the product of two consecutive transition
matrices equals the corresponding two-step matrix. We do not discuss this question further in this document.
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Notice and Disclaimer

This document and all of the contents (Content) within is the property of The Burgiss Group, LLC
or its affiliates (collectively, “Burgiss”). The Information may not be reproduced or redistributed in
whole or in part without prior written permission from Burgiss.

The Content is the confidential information of Burgiss, is only for internal use by the Clients of
Burgiss (Clients), and may not be shared with third parties. The Content may not be used to create
derivative works or be used to create any financial instruments or products and may not be used to
provide investment consulting advice without prior written permission from Burgiss.

The Content is provided “As 1s” and any use of the Content is at Clients own risk. BURGISS
MAKES NO EXPRESS OR IMPLIED WARRANTIES OR REPRESENTATIONS WITH RESPECT TO THE
CONTENT (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF), AND TO THE MAXIMUM
EXTENT PERMITTED BY APPLICABLE LAW, AND DISCLAIMS ALL IMPLIED WARRANTIES (INCLUDING,
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF ORIGINALITY, ACCURACY, TIMELINESS, NON-
INFRINGEMENT, COMPLETENESS, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE)
WITH RESPECT TO ANY OF THE CONTENT.

Without limiting any of the foregoing and to the maximum extent permitted by applicable law,
in no event shall Burgiss have any liability regarding any of the Content for any direct, indirect,
special, punitive, consequential (including lost profits) or any other damages even if notified of the
possibility of such damages.

Burgiss Applied Research © 2018 The Burgiss Group, LLC



/m\
Burgiss

111 River Street, 10th Floor
Hoboken, NJ 07030

p: +1 (201) 427.9600
f: +1 (201) 795.9237
w: burgiss.com



